SACRAMENTO COUNTY WATER AGENCY 2022 WATER QUALITY REPORT - ARDEN PARK VISTA, NORTHGATE & SOUTHWEST TRACT

DETECTED PRIMARY STANDARDS - Mar	idatory Health-R	elated Stan	laaras								
Established by the State Water Resource	s Control Board	(State Boar	rd)								
			PHG or			ARDEN P	ARK VISTA	NORT	HGATE	SWT (SEE #2)
	SAMPLE DATE:		(MCLG) or	MCL or		RANGE	WEIGHTED	RANGE	WEIGHTED	RANGE	WEIGHTED
CONSTITUENT	(See Note #1)	UNITS	[MRDLG]	[MRDL]	MAJOR SOURCES IN DRINKING WATER	(LO-HI)	AVERAGE	(LO-HI)	AVERAGE	(LO-HI)	AVERAGE
NORGANIC CONTAMINANTS											
Aluminum	2017 - 2022	PPM	0.6	1	Erosion of natural deposits; residue from some surface water treatment processes	ND	ND	ND	ND	ND - 0.09	ND
Annual	0017 0000	222	0.004	10	Erapion of natural deposite: runoff from probarde: glass and electronics production wastes		ND	07 50	10	0.4	0.4
Arsenic	2017 - 2022	РРВ	0.004	10	Erosion of natural deposits, runoil noni orchards, glass and electronics production wastes.	ND - 3.7	ND	3.7 - 5.8	4.6	2 - 4	3.1
Barium	2017 - 2022	PPM	2	1	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits.	ND	ND	ND - 0.17	0.13	ND - 0.2	0.1
Chromium (Total Cr)	2017 - 2022	PPB	(100)	50	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits.	ND	ND	ND - 11	ND	ND	ND
			()		Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer						
Fluoride (Natural Source)	2017 - 2022	PPM	1	2	and aluminum factories.	ND	ND	0.14 - 0.18	0.16	ND	ND
					Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural						
Nitrate (as N)	2022	PPM	10	10	deposits.	ND - 4.9	1.8	0.49 - 5.1	1.5	1.5 - 6.9	5.5
REGULATED ORGANIC CHEMICALS											
Tetrachloroethylene (PCE)	2020 - 2022	PPB	0.06	5	Discharge from factories, dry cleaners and auto shops (metal degreaser).	ND	ND	ND	ND	ND - 1.9	0.6
Trichloroethylene (TCE)	2020 - 2022	PPB	1.7	5	Discharge from metal degreasing sites and other factories.	ND	ND	ND	ND	ND - 0.9	ND
RADIOACTIVE CONTAMINANTS											
Gross Alpha Activity	2014 - 2022	pCi/L	(0)	15	Erosion of natural deposits.	ND - 4.5	ND	ND - 3	ND	ND - 9.5	5.2
3 Uranium	2014 - 2022	pC/L	0.43	20	Erosion of natural deposits.	ND - 1.7	ND	ND - 3.5	ND	1.6 - 7.5	4.6
DISTRIBUTION SYSTEM	•	•									
Chlorine Residuals	2022	PPM	[4]	[4.0]	Drinking water disinfectant added for treatment.	0.33 - 1.87	1.23	0.77 - 1.5	1.43	0.47 - 1.4	1.1
4 TTHMs [Total Trihalomethanes]	2022	PPB	n/a	80	Byproduct of drinking water disinfection.	ND - 2.4	0.6	ND - 1.2	0.4	4.4	4.4
5 HAA5 [Sum of 5 Haloacetic Acids]	2022	PPB	n/a	60	Byproduct of drinking water disinfection.	ND	ND	ND	ND	ND	ND
					Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer						
6 Fluoride (Treatment Related- Distribution)	2022	PPM	1	2	and aluminum factories.	0.62 - 0.85	0.72	NA	NA	ND - 1	0.7
ICROBIOLOGICAL CONTAMINANTS						LEVEL	FOUND	LEVEL	FOUND	LEVEL	FOUND
		# of Positive									
7 Total Caliform Pastaria	2022	Samples	(0)	>1	Naturally present in the envirionment	1		0		0	

NOTES:

The State Water Resources Control Board Division of Drinking Water (SWRCB DDW) allows Sacramento County Water Agency (SCWA) to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

² Southwest Tract (SWT) receives its water from Fruitridge Vista Water Company which changed its ownership to California American Water Company in March 2020. For questions regarding water quality on Southwest Tract, please callCalifornia American Customer Service at 1-(888) 237-1333.

³ The SWRCB DDW allows the measurement of gross alpha radiation as a surrogate for Uranium.

Total Trihalomethanes are the sum of Four Regulated THMs, i.e., Chloroform, Bromodichloromethane, Dibromochloromethane, and Bromoform.

⁵ Haloacetic Acids are the Sum of Five Regulated HAA5s, i.e., Monochloroacetic Acid, Monobromoacetic Acid, Dichloroacetic Acid, Dibromoacetic Acid, and Trichloroacetic Acid.

⁶ The Arden Park Vista (APV) water system's facilities are fluoridated to reduce tooth decay in children. Studies show that water fluoridation reduces tooth decay by 20 to 40 percent. The SWRCB DDW advised SCWA to implement the CDC's recommended optimal fluoride content of 0.7 mg/L and control range of 0.6 mg/L – 1.2 mg/L. Information about fluoridation, oral health and current issues is available from http://waterboards.ca.gov/drinking_water/Fluoridation.html.

⁷ On Systems that collect less than 40 samples per month, the Total Coliform Bacteria MCL is no more than one (1) monthly sample return total coliform positive, per the Total Coliform Rule (TCR). A positive TC sample triggers collection of samples for E. coli at the source (i.e., groundwater wells) per the federal Ground Water Rule (GWR). In 2022, all samples taken per the GWR returned negative (absent) for E. coli.
SECONDARY STANDARDS - Application Standards

Estab	lished by the State Water Resources	s Control Board	(State Boa	rd)								
				PHG or			ARDEN P	ARK VISTA	NORT	HGATE	S	WT
				(MCLG) or	MCL or		RANGE	WEIGHTED	RANGE	WEIGHTED	RANGE	WEIGHTED
CONST	TITUENT	SAMPLE DATE:	UNITS	[MRDLG]	[MRDL]	MAJOR SOURCES IN DRINKING WATER	(LO-HI)	AVERAGE	(LO-HI)	AVERAGE	(LO-HI)	AVERAGE
	Aluminum	2017 - 2022	PPB	n/a	200	Erosion of natural deposits; residue from some surface water treatment processes	ND	ND	ND	ND	ND - 89	ND
	_					Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from						
	Copper	2017 - 2022	PPM	n/a	1	wood preservatives.	ND - 0.29	ND	ND	ND	ND	ND
	Iron	2014 - 2021	PPB	n/a	300	Leaching from natural deposits; industrial wastes.	ND - 110	ND	ND - 100	ND	ND - 200	ND
	Manganese	2014 - 2022	PPB	n/a	50	Leaching from natural deposits.	ND - 43	ND	ND	ND	ND	ND
	Odor-Threshold	2014 - 2022	UNITS	n/a	3	Naturally-occurring organic materials.	ND - 1.3	ND	ND	ND	ND	ND
	Turbidity	2014 - 2022	UNITS	n/a	5	Soil runoff.	ND - 1.3	0.2	ND - 0.46	0.21	ND - 4.4	0.7
	Total Dissolved Solids	2014 - 2022	PPM	n/a	1000	Runoff/leaching from natural deposits.	110 - 320	209	180 - 450	291	75 - 500	315
	Specific Conductance (E.C.)	2014 - 2022	umhos/cm	n/a	1600	Substances that form ions when in water; seawater influence.	87 - 480	276	280 - 730	521	100 - 740	456
	Chloride	2014 - 2022	PPM	n/a	500	Runotf/leaching from natural deposits; seawater influence.	1.7 - 23	10	18 - 65	37	5.4 - 56.1	29.1
	Sulfate	2014 - 2022	PPM	n/a	500	Runoff/leaching from natural deposits; industrial wastes.	2.3 - 22	10.7	3.9 - 27	15.9	5.1 - 39.1	20.3
OTHER	CONSTITUENTS ANALYZED	T										
	pH Tatal Useda and (as CaCC2)	2014 - 2022	UNITS	n/a	MO		7.2 - 8	7.7	7.9 - 8	8.0	7.4 - 8.2	7.8
8	Total Hardness (as CaCO3)	2014 - 2022	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	43 - 220	125	71-310	151	42 - 330	202
9	Total Hardness (as CaCO3)	2014 - 2022	GRAINS	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	2.5 - 12.9	7	4 - 18	9	2.5 - 19.3	12
	Total Alkalinity (as CaCO3)	2014 - 2022	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	44 - 170	106	90 - 250	142	26 - 280	167
	Bicarbonate (as HCO3)	2014 - 2021	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	53 - 200	130	110 - 300	172	NA	NA
	Sodium	2014 - 2022	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	4.2 - 14	9.8	24 - 32	27	5.9 - 23.8	17
	Calcium	2014 - 2022	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	7.3 - 45	25.9	14 - 58	30	13 - 78	50
	Magnesium	2014 - 2022	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	6.1 - 27	14	8.7 - 40	18.1	9 - 39	25
LEAD	a COPPER (See Note TU)											
LEAD		SAMPLE DATE	UNITS	PHG or (MCLG)	ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER	NUME	BER OF	90TH % DETE	6 LEVEL ECTED	NUI	MBER DING AL
LEAD	CONTAMINANT	SAMPLE DATE	UNITS	PHG or (MCLG)	ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial	NUME SAN	BER OF IPLES	90TH % DETE	6 LEVEL ECTED	NUI EXCEE	MBER DING AL
	CONTAMINANT	SAMPLE DATE 2022	UNITS PPB	PHG or (MCLG) (0.2)	ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	NUME	BER OF IPLES	90TH % DETE	6 LEVEL ECTED	NUI EXCEE	MBER DING AL
	CONTAMINANT Lead Copper	SAMPLE DATE 2022 2022	UNITS PPB PPM	PHG or (MCLG) (0.2) (0.3)	ACTION LEVEL 15 1.3	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	NUME	BER OF IPLES	90TH 9 DETE 1	6 LEVEL ECTED	NUI EXCEE	MBER EDING AL
	COPPER (See Note 10) CONTAMINANT Lead Copper	SAMPLE DATE 2022 2022	UNITS PPB PPM	PHG or (MCLG) (0.2) (0.3)	ACTION LEVEL 15 1.3	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial	NUME	BER OF IPLES	90TH 9 DETE 1	6 LEVEL ECTED	NUI EXCEE	MBER DING AL
нсите АРИ	COPPER (See Note 10) CONTAMINANT Lead Copper Lead	SAMPLE DATE 2022 2022 2022	UNITS PPB PPM PPB	PHG or (MCLG) (0.2) (0.3) (0.2)	ACTION LEVEL 15 1.3 15	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives.	NUME	BER OF IPLES 30 30 9	90TH % DETE 0	A LEVEL ECTED	NUI EXCEE	MBER IDING AL
ОКТНGATE АРУ	COPPER (See Note 10) CONTAMINANT Lead Copper Lead	SAMPLE DATE 2022 2022 2022	UNITS PPB PPM PPB	PHG or (MCLG) (0.2) (0.3) (0.2)	ACTION LEVEL 15 1.3 15	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from	NUME	BER OF IPLES 30 9	90TH % DETE 0	A LEVEL ECTED	NUI EXCEE	MBER DING AL 0 0 0 0
NORTHGATE APV	CONTAMINANT Lead Copper Lead Copper	SAMPLE DATE 2022 2022 2022 2022 2022	UNITS PPB PPM PPB PPM	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3)	ACTION LEVEL 15 1.3 15 1.3	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits.	NUME SAN	BER OF IPLES 30 9 9	90TH 9 DETE 0 0	6 LEVEL ECTED ND 1.29 ND 1.16	NUI EXCEE	MBER DING AL 0 0 0 0 0 0 0 0
NT NORTHGATE APV	COPPER (See Note 10) CONTAMINANT Lead Copper Lead Copper Lead Lead	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022	UNITS PPB PPM PPB PPM PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2)	ACTION LEVEL 15 1.3 15 1.3 1.3 15	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	NUME	BER OF IPLES 30 30 9 9 5	90TH 9 DETE 0 0 0	4 LEVEL ECTED 1.29 ND 1.16 ND	NUT	MBER DING AL 0 0 0 0 0 0 0 0 0 0 0 0 0
SWT NORTHGATE APV	CONTAMINANT Lead Copper Lead C	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022	UNITS PPB PPM PPB PPM PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2)	ACTION LEVEL 15 1.3 15 1.3 15 1.3	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits.	NUME	BER OF IPLES 30 30 9 9 5 5	90TH 9 DETE 0	% LEVEL ECTED ND 129 ND 16 ND		MBER DING AL 0 0 0 0 0 0 0 0 0
SWT NORTHGATE APV	CONFLEX (See Note 10) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Copper	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022	UNITS PPB PPM PPB PPM PPB PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3)	ACTION LEVEL 15 1.3 15 1.3 15 1.3	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits.	NUME SAN	BER OF IPLES 30 9 9 5 5 5 5 5	90TH 9 DETE 0 0 0 0	% LEVEL ECTED ND 1.29 ND 1.16 ND 0.41	NUI	MBER DING AL 0 0 0 0 0 0 0 0 0 0 0
SWT NORTHGATE APV	CONFLEX (See Note 10) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Copper LEAD Sampling in schools	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2024 2025 2026 2027 2028 2029 2020 2021 2022 2022 2024 2025 2026 2027 2028 2029 2020 2021 2022 2022 2022 2022 2022 2021 2022 2022 2021 2022 2022 2021 2022 2021 2022 2022 2022 2031	UNITS PPB PPM PPB PPM PPB PPM UNITS	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG)	ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems. MAJOR SOURCES IN DRINKING WATER	NUME SAN	SER OF IPLES 30 30 9 9 5 5 5 8 8 8 8 6 0 0 1 8	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED ND 129 ND .16 ND .041 NGE ECTED	NUI EXCEE	MBER DING AL
PV SWT NORTHGATE APV	COPPER (See Note 10) CONTAMINANT Lead Copper Lead Copper Lead Copper LEAD Sampling in schools	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 DATE	UNITS PPB PPM PPB PPM PPB PPM UNITS	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG)	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial	NUME SAN	SER OF IPLES 30 30 9 5 5 SER OF OOLS	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED ND 1.29 ND 16 ND 041 NGE ECTED	NUI EXCEE	MBER DING AL
APV SWT NORTHGATE APV	COPPER (See Note 10) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Lead Lead Lead Lead Lead Lead Lead	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 SAMPLE DATE 2018	UNITS PPB PPM PPB PPM PPB PPM PPB PPM UNITS PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2)	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	NUME SAN	SER OF IPLES 30 30 9 5 5 30 5 5 5 500LS 3	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED ND 1.29 ND 16 ND .041 NGE ECTED I- 5.3	NUI EXCEE	MBER DING AL 0
	COPPER (See Note To) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Lead Lead Copper LEAD Sampling in schools Lead (San Juan Unified School District) EGULATED CONTAMINANT MONITO	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2021 2022 2022 SAMPLE DATE 2018 RING RULE (UC	UNITS PPB PPM PPB PPM PPB PPM UNITS PPB MR 4) - Est	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2) ablished b	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15 y USEPA (Se	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits.	NUME SAN	BER OF IPLES 30 30 9 5 5 SER OF OOLS 3	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED 1.29 ND 16 ND	NUI	MBER DING AL
APV SWT NORTHGATE APV	COPPER (See Note To) CONTAMINANT Lead Copper Lead Copp	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2021 SAMPLE DATE 2018 RING RULE (UC SAMPLE	UNITS PPB PPM PPB PPM PPB PPM UNITS PPB MR 4) - Est	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2) ablished b MCL	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15 Y USEPA (Se Notification	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. extra deposits.	NUME SAN	SER OF IPLES 30 30 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED 1.29 ND .16 ND .041 NGE ECTED -5.3 thgate	NUI EXCEE	MBER DING AL 0 0 0 0 0 0 0 MBER DING AL 0 vest Tract
	COPPER (See Note To) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Copper Lead Copper LEAD Sampling in schools Lead (San Juan Unified School District) EGULATED CONTAMINANT MONITO AMINANT	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2023 SAMPLE DATE 2018 RING RULE (UC SAMPLE DATE	UNITS PPB PPM PPB PPM PPB UNITS PPB UNITS UNITS	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2) ablished b MCL (PHG)	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15 VUSEPA (Sc Notification Level	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. MAJOR SOURCES IN DRINKING WATER	NUME SAN SAN SAN SAN SCH Arden F RANGE	SER OF IPLES 30 30 9 9 5 5 5 8 8 8 7 8 7 8 8 8 7 8 7 8 7 8 7 8	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& LEVEL ECTED ND 129 ND 16 ND 41 NGE ECTED - 5.3 thgate WTD. AVG.	NUI EXCEE	MBER DING AL
	CONFLEX (See Note To) CONTAMINANT Lead Copper Lead Copper Lead Copper LEAD Sampling in schools Lead (San Juan Unified School District) COULATED CONTAMINANT MONITO AMINANT Manganese	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 RING RULE (UC SAMPLE DATE 2018 2018 - 2022	UNITS PPB PPM PPB PPM PPB PPM UNITS PPB MR 4) - Est UNITS PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2) ablished b MCL (PHG) 50	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15 VUSEPA (Se Notification Level 500	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Patternal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. MAJOR SOURCES IN DRINKING WATER Leaching from natural deposits.	NUME SAN NUME SCH Arden F RANCE ND - 43	BER OF IPLES 30 30 9 9 5 5 5 5 8 ER OF OOLS 3 3 2 ark Vista WTD. AVG. ND	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& LEVEL ECTED 1.29 ND 1.16 ND 0.41 NGE ECTED I-5.3 thgate WTD. AVG. ND	NUI EXCEE NUI EXCEE Southw RANGE ND - 26	MBER DING AL 0
	COMPER (See Note To) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Copper LEAD Sampling in schools Lead (San Juan Unified School District) EGULATED CONTAMINANT MONITO AMINANT Manganese HAA5	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 SAMPLE DATE 2018 RING RULE (UC SAMPLE DATE 2018 - 2022 2018 - 2022 2018 - 2022	UNITS PPB PPM PPB PPM PPB PPM UNITS PPB MR 4) - Est UNITS PPB PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2) ablished b MCL (PHG) 50 60	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15 Y USEPA (Se Notification Level 500 n/a	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; discharges from industrial manufactures; erosion of natural deposits. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. test 11 MAJOR SOURCES IN DRINKING WATER Leaching from natural deposits. Byproduct of drinking water disinfection.	NUME SAN NUME SCH Arden F RANGE ND - 43 ND	BER OF IPLES 30 30 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED 1.29 ND	NUI EXCEE NUI EXCEE Southw RANGE ND - 26 ND - 30	MBER DING AL 0 0 0 0 0 0 0 MBER DING AL 0 0 MBER 2DING AL 0 0 MBER 2DING AL
	COPPER (See Note To) CONTAMINANT Lead Copper Lead Copper Lead Copper Lead Copper LEAD Sampling in schools Lead (San Juan Unified School District) EGULATED CONTAMINANT MONITO AMINANT Manganese HAA5 HAA6Br	SAMPLE DATE 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 SAMPLE DATE 2018 RING RULE (UC SAMPLE DATE 2018 - 2022 2018 - 2022 2018 - 2020	UNITS PPB PPM PPB PPM UNITS PPB WR 4) - Est PPB PPB PPB PPB	PHG or (MCLG) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) PHG or (MCLG) (0.2) ablished b MCL (PHG) 50 60 n/a	ACTION LEVEL 15 1.3 15 1.3 15 1.3 ACTION LEVEL 15 Y USEPA (Se Notification Level 500 n/a n/a	MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits; leaching from wood preservatives. MAJOR SOURCES IN DRINKING WATER Internal corrosion of household water plumbing systems; discharges from industrial manufactures; erosion of natural deposits. est 11) MAJOR SOURCES IN DRINKING WATER Leaching from natural deposits. Byproduct of drinking water disinfection. Byproduct of drinking water disinfection.	NUME SAN NUME SCH Arden F RANGE ND -43 ND NR	BER OF IPLES 30 30 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90TH 9 DETE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% LEVEL ECTED 1.29 ND .16 ND .041 NGE ECTED - 5.3 thgate WTD. AVG. ND ND	NUT EXCEE NUT EXCEE Southw RANGE ND - 26 ND - 30 ND - 5.6	MBER DING AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 vest Tract 0.6.5 20.8 2.9

NOTES:

. Hardness units are PPM. General guidelines for classification of water hardness are: 0 - 60 PPM as soft; 61 - 120 PPM as moderately hard; 121 - 180 PPM as hard; and greater than 180 PPM as very hard.

9. Most commercial companies use "grain" units. Conversion: 17.1 PPM = 1 grain.

10. The levels for Lead & Copper concentrations were obtained from the 90th percentile sampling of thirty (30) homes at the tap for Arden Park Vista (APV), nine (9) for Northgate (NOR) & five (5) for Southwest Tract (SWT). The MCLs for lead and copper are set at "Action Levels" (AL). None of the samples taken in APV, NOR or SWT exceeded the Action Level for Copper or Lead. Please refer to the educational information on Lead in drinking water.

11. Unregulated Contaminants Monitoring Rule (UCMR 4 / 2018 - 2020 Monitoring) with notification levels help to determine where certain contaminants occur and whether they need to be regulated. The APV and NOR water systems were not required to sample for the UCMR4. For more information on the levels of unregulated contaminants found in SWT's system, please call California American Customer Service at 1-(888) 237-1333.

PER- & POLYFLUOROALKYL SUBSTANCES (PFAS) - See # 12

he State Water Resources Control Board Division of Drinking Water (SWRCB DDW) established new drinking water guidelines for water agencies to follow in detecting and reporting the presence of perfluorooctanoic acid (PFOA) and erfluorooctanesulfonic acid (PFOS) – two members of a large family of chemicals known as per- and polyfluoroalkyl substances (PFAS). Until PFOA and PFOS were phased out in the 2000s due to health concerns, these chemicals were widely and in greace and tain projections concerns due to the projections for computing the presence of these chemicals in the emvironment and their

tendency to accumulate in groundwater. Long-term exposure of PFOA and PFOS over certain levels is associated with adverse health effects that include cancer and developmental harm. SWRCB DDW has identified analytical methods capable of detecting the following eighteen (18) perfluorinated compounds in drinking water:

	SAMPLE	Notification	Response		Arden Park Vista	Northgate	Southwest Tract
PERFLUOROOCTANOIC ACID (PFOA)			PERFLUORO	TETRADECANOIC ACID (PFTA)	4,8-DIOXA-3H-PERFLUORONO	NANOIC ACID (ADONA)	
PERFLUOROOCTYL SULFONIC ACID (F	PFOS)		PERFLUORO	HEXANOIC ACID (PFHxA)	11-CHLOROEICOSAFLUORO-3	-OXAUNDECANE-1-SULFONIC	ACID (11CI-PF3OUdS)
PERFLUORONONANOIC ACID (PFNA)			PERFLUORO	DODECANOIC ACID (PFDoA)	9-CHLOROHEXADECAFLUORO	-3-OXANONE-1 SULFONIC ACI	D (9CI-PF3ONS)
PERFLUOROHEXANE SULFONIC ACID	(PFHxS)		PERFLUORO	DECANOIC ACID (PFDA)	HEXAFLUOROPROPYLENE OX	(IDE DIMER ACID (HFPO-DA)	
PERFLUOROHEPTANOIC ACID (PFHpA))		N-METHYL PE	ERFLUOROOCTANESULFONAMIDOACETIC ACID (NMeFOSAA)	PERFLUOROUNDECANOIC AC	ID (PFUnA)	
PERFLUOROBUTANE SULFONIC ACID	(PFBS)		N-ETHYL PEF	RFLUOROOCTANESULFONAMIDOACETIC ACID (NEtFOSAA)	PERFLUOROTRIDECANOIC AC	CID (PFTrDA)	

		Notification	Response		Aluch		11011	inguto	oouun	cot muct
DATE	UNITS	Level (#13)	Level (#14)	HEALTH EFFECTS LANGUAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE
				Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory						
2019 - 2022	PPT	5.1	10	animals.	ND	ND	ND - 9.3	ND	ND	ND
				Perfluorooctane sulfonic acid exposures resulted in immune suppression and cancer in laboratory						
2019 - 2022	PPT	6.5	40	animals.	ND	ND	ND - 5.6	ND	ND	ND
				Perfluorohexane sulfonic acid exposures resulted in decreased total thyroid hormone in male						
2019 - 2022	PPT	3.0	20	rats.	ND	ND	ND - 7.5	ND	ND	ND
				Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant						
2019 - 2022	PPT	500	5000	female mice.	ND	ND	ND - 3.4	ND	ND	ND
	DATE 2019 - 2022 2019 - 2022 2019 - 2022 2019 - 2022 2019 - 2022	DATE UNITS 2019 - 2022 PPT 2019 - 2022 PPT 2019 - 2022 PPT 2019 - 2022 PPT 2019 - 2022 PPT	DATE UNITS Level (#13) 2019 - 2022 PPT 5.1 2019 - 2022 PPT 6.5 2019 - 2022 PPT 3.0 2019 - 2022 PPT 500	DATE UNITS Level (#13) Level (#14) 2019-2022 PPT 5.1 10 2019-2022 PPT 6.5 40 2019-2022 PPT 3.0 20 2019-2022 PPT 5.00 5000	DATE UNITS Level (#13) Level (#14) HEALTH EFFECTS LANGUAGE 2019 - 2022 PPT 5.1 10 Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals. 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in immune suppression and cancer in laboratory animals. 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. 2019 - 2022 PPT 3.0 20 Perfluorobutane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. 2019 - 2022 PPT 500 5000 Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice.	DATE UNITS Level (#1) Level (#1) Head (#1) HEALTH EFFECTS LANGUAGE RANGE 2019 - 2022 PPT 5.1 10 Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals. ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in increased liver weight and cancer in laboratory animals. ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. ND 2019 - 2022 PPT 3.0 20 Perfluorobutane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. ND 2019 - 2022 PPT 500 5000 Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice. ND	DATE UNITS Level (#13) Cevel (#14) HEALTH EFFECTS LANGUAGE RANGE AVERAGE 2019 - 2022 PPT 5.1 10 Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals. ND ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND 2019 - 2022 PPT 3.0 20 Perfluorobutane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. ND ND 2019 - 2022 PPT 5.00 5000 Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant female mice. ND ND	DATE UNITS Level (#13) Level (#14) HEALTH EFFECTS LANGUAGE RANGE AVERAGE RANGE 2019 - 2022 PPT 5.1 10 Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals. ND ND ND ND - 9.3 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND ND - 5.6 2019 - 2022 PPT 6.5 40 Perfluorobexane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND ND - 5.6 2019 - 2022 PPT 3.0 20 Perfluorobexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. ND ND ND - 7.5 2019 - 2022 PPT 500 5000 Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant ND ND - 7.6	ONL CL Notice and CL </td <td>DATE UNITS Level (#1) Level (#1) Level (#1) HEALTH EFFECTS LANGUAGE RANGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE 2019 - 2022 PPT 5.1 10 Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals. ND ND ND ND - 9.3 ND ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND ND - 5.6 ND ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND ND - 5.6 ND ND 2019 - 2022 PPT 3.0 20 Perfluorobexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. ND ND ND - 7.5 ND ND 2019 - 2022 PPT 5.00 5000 Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant ND ND ND - 3.4 ND ND</td>	DATE UNITS Level (#1) Level (#1) Level (#1) HEALTH EFFECTS LANGUAGE RANGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE 2019 - 2022 PPT 5.1 10 Perfluorooctanoic acid exposures resulted in increased liver weight and cancer in laboratory animals. ND ND ND ND - 9.3 ND ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND ND - 5.6 ND ND 2019 - 2022 PPT 6.5 40 Perfluorooctane sulfonic acid exposures resulted in decreased total thyroid hormone in male animals. ND ND ND - 5.6 ND ND 2019 - 2022 PPT 3.0 20 Perfluorobexane sulfonic acid exposures resulted in decreased total thyroid hormone in male rats. ND ND ND - 7.5 ND ND 2019 - 2022 PPT 5.00 5000 Perfluorobutane sulfonic acid exposures resulted in decreased thyroid hormone in pregnant ND ND ND - 3.4 ND ND

NOTES:

12. Starting in the 2nd Quarter of 2019, SCWA (per SWRCB DDW direction) began PFAS monitoring at numerous wells in the APV & NOR water systems. The results for PFAS monitoring in the APV system returned Non-Detect and SCWA concentrated testing where detectable amounts of PFAS were found in groundwater wells in NOR. The results listed pertain to monitoring of all wells in the APV & NOR water system through December 31, 2022. For more information on PFAS, PFOA and PFOS, please visit the SWRCB DDW's resource page: https://www.waterboards.ca.gov/drinking_water/PFOA_PFOS.html

- 13. The guidelines adopted by the SWRCB DDW set Notification Levels (NL) of 5.1 parts per trillion (PPT) for PFOA, 6.5 PPT for PFOS, 3 PPT for PFHxS & 500 PPT for PFBS. If the NL is exceeded, the water agency (SCWA) is required to report the results to the Sacramento County Board of Supervisors and to the SWRCB DDW. The water agency is also urged to report this information to the customer.
- 14. The SWRCB DDW established a Response Level (RL) of 10 PPT for PFOA, 40 PPT for PFOS, 20 PPT for PFHxS & 5000 PPT for PFBS. If the RL is exceeded in drinking water provided to consumers, the SWRCB DDW recommends that the water agency consider taking the water source out of service, provide treatment if that option is available, or provide public notice of the exceedance level.

PARTS PER MILLION (PPM) OR MILLIGRAMS PER LITER (mg/L)

Parts per million (PPM) and milligrams per liter (mg/L) are units of measurement to determine the amount of a chemical in water. If we thought of each "part" or "milligram" as a second in a period of time, the following time frames would be an appropriate or accurate comparison:

- =1 second in 11.5 days
- =1 second in nearly 32 years
- =1 second in nearly 32,000 years
- =1 second in nearly 32,000,000 years

100% of the water for the Arden Park Vista and Northgate water systems comes from groundwater wells. Southwest Tract water is supplied by Cal-Am Water. For more detailed information regarding SCWA water quality, please call Aaron Wyley @ (916) 875-5815.

SACRAMENTO COUNTY WATER AGENCY 2022 WATER QUALITY REPORT - ARDEN PARK VISTA, NORTHGATE & SOUTHWEST TRACT

ALRegulatory Action Level	NANot Analyzed	NRNot Required	PPBParts per Billion (ug/l)	TOCTotal Organic Carbon
MFLMillion Fibers Per Liter	n/aNot Applicable	NTUNephelometric Turbidity Units	PPMParts per Million (mg/l)	TTTreatment Technique
MOMonitored Only	NDNon-Detected	PDWSPrimary Drinking Water Standard	PPTParts per Trillion (ng/l)	WTPWater Treatment Plant
MPNMost Probable Number	NLNotification Level	pCi/L…Pico Curies per Liter	RLResponse Level	
DEFINITIONS				
Average: The annual average of all tests for a particular subst	tance.			
Detection Limit for Reporting: The limit at or above which a Maximum Contaminant Lovel (MCL): The highest level of a	contaminant is detected.	nary MCLs are set as close to the PHCs (or MCLCs) as is economically	and technologically feasible	
Secondary MCLs are set to protect the odor, taste, and appr	contaminant that is allowed in drinking water. Fri	hary MCLS are set as close to the PHOS (or MCLOS) as is economically		
Maximum Contaminant Level Goal (MCLG): The level of a c	contaminant in drinking water below which there i	s no known or expected risk to health. MCLGs are set by the U.S. Envir	onmental Protection Agency.	
Maximum Residual Disinfectant Level (MRDL): The highest	t level of a disinfectant allowed in drinking water.	There is convincing evidence that addition of a disinfectant is necessary	for control of microbial contaminants.	
Maximum Residual Disinfectant Level Goal (MRDLG): The	level of a drinking water disinfectant below which	there is no known or expected risk to health. MRDLGs do not reflect th	e benefits of the use	
of disinfectants to control microbial contaminants.				
Primary Drinking Water Standards (PDWS): MCLs, MRDLs	and treatment techniques (TTs) for contaminants	that affect health, along with their monitoring and reporting requirement	5.	
Public Health Goal (PHG). The level of a contaminant in drink	ing water below which there is no known or expe	cted risk to health. PHGs are set by the California Environmental Prote-	ction Agency.	
Range (Lo - H): The range between the lowest and highest vi Regulatory Action Level (AL): The concentration of a contain	aides of a specific substance measured througho	ther requirements that a water system must follow		
Treatment Technique (TT): A required process intended to re	educe the level of a contaminant in drinking water			
Weighted Average (WTD AVG): An average of water quality	samples in which each sample is assigned a wei	ght. Each sample's contribution (or weight) is based on the amount of w	ater the corresponding water source produces	
for the whole system. Instead of each of the sample results	s contributing equally to the final average, some o	of the results contribute more than others.		
tate Mandated Information for Nitrate. Arsenic & Lead:				
Niterator				
Nitrate:				
Nitrate: Nitrate in drinking water at levels above 10 mg/L is a blueness of the skin. Nitrate levels above 10 mg/L health care provider. Nitrate levels may rise quickly	a health risk for infants of less than six mon may also affect the ability of the blood to can / for short periods of time because of rainfall	hs of age. Such nitrate levels in drinking water can interfere with ry oxygen in other individuals, such as pregnant women and tho or agricultural activity.	the capacity of the infant's blood to carry oxygen, res se with certain specific enzyme deficiencies. If you an	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your
Nitrate: Nitrate in drinking water at levels above 10 mg/L is a blueness of the skin. Nitrate levels above 10 mg/L health care provider. Nitrate levels may rise quickly Arsenic:	a health risk for infants of less than six mon may also affect the ability of the blood to car r for short periods of time because of rainfall	hs of age. Such nitrate levels in drinking water can interfere with ry oxygen in other individuals, such as pregnant women and tho or agricultural activity.	the capacity of the infant's blood to carry oxygen, res se with certain specific enzyme deficiencies. If you an	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your
Nitrate: Nitrate in drinking water at levels above 10 mg/L is : blueness of the skin. Nitrate levels above 10 mg/L health care provider. Nitrate levels may rise quickly Arsenic: While your drinking water meets the federal and sta Protection Agency continues to research the health	a health risk for infants of less than six mont may also affect the ability of the blood to car r for short periods of time because of rainfall the standard for arsenic, it does contain low l effects of low levels of arsenic, which is a m	ths of age. Such nitrate levels in drinking water can interfere with ry oxygen in other individuals, such as pregnant women and tho or agricultural activity. evels of arsenic. The arsenic standard balances the current unc nineral known to cause cancer in humans at high concentrations	the capacity of the infant's blood to carry oxygen, res se with certain specific enzyme deficiencies. If you an erstanding of arsenic's possible health effects against and is linked to other health effects such as skin dama	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your the costs of removing arsenic from drinking water. The U.S. Environmental ige and circulatory problems.
Nitrate: Nitrate in drinking water at levels above 10 mg/L is : blueness of the skin. Nitrate levels above 10 mg/L health care provider. Nitrate levels may rise quickly Arsenic: While your drinking water meets the federal and sta Protection Agency continues to research the health Lead:	a health risk for infants of less than six mon may also affect the ability of the blood to can for short periods of time because of rainfall ite standard for arsenic, it does contain low I effects of low levels of arsenic, which is a n	ths of age. Such nitrate levels in drinking water can interfere with ry oxygen in other individuals, such as pregnant women and tho or agricultural activity. evels of arsenic. The arsenic standard balances the current und ineral known to cause cancer in humans at high concentrations	the capacity of the infant's blood to carry oxygen, res se with certain specific enzyme deficiencies. If you an erstanding of arsenic's possible health effects against and is linked to other health effects such as skin dama	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your the costs of removing arsenic from drinking water. The U.S. Environmental ge and circulatory problems.
 Nitrate: Nitrate in drinking water at levels above 10 mg/L is i blueness of the skin. Nitrate levels above 10 mg/L i health care provider. Nitrate levels may rise quickly Arsenic: While your drinking water meets the federal and sta Protection Agency continues to research the health Lead: If present, elevated levels of lead can cause serious responsible for providing high quality drinking water water for drinking or cooking. If you do so, you may methods, and steps you can take to minimize expose 	a health risk for infants of less than six mont may also affect the ability of the blood to can r for short periods of time because of rainfall the standard for arsenic, it does contain low the effects of low levels of arsenic, which is a m is health problems, especially for pregnant w to the control the variety of materials wish to collect the flushed water and reuse sure is available from the Safe Drinking Wat	ths of age. Such nitrate levels in drinking water can interfere with ry oxygen in other individuals, such as pregnant women and tho or agricultural activity. evels of arsenic. The arsenic standard balances the current unc ineral known to cause cancer in humans at high concentrations omen and young children. Lead in drinking water is primarily fro used in plumbing components. When your water has been sittin it for another beneficial purpose, such as watering plants. If you er Hotline or at http://www.epa.gov/lead.	the capacity of the infant's blood to carry oxygen, resse with certain specific enzyme deficiencies. If you are erstanding of arsenic's possible health effects against and is linked to other health effects such as skin dama m materials and components associated with service I g for several hours, you can minimize the potential for are concerned about lead in your water, you may wish	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your the costs of removing arsenic from drinking water. The U.S. Environmental ige and circulatory problems. ines and home plumbing. The Sacramento County Water Agency is lead exposure by flushing your tap for 30 seconds to 2 minutes before using to have your water tested. Information on lead in drinking water, testing
Nitrate: Nitrate in drinking water at levels above 10 mg/L is : blueness of the skin. Nitrate levels above 10 mg/L in health care provider. Nitrate levels may rise quickly Arsenic: While your drinking water meets the federal and sta Protection Agency continues to research the health Lead: If present, elevated levels of lead can cause serious responsible for providing high quality drinking water water for drinking or cooking. If you do so, you may methods, and steps you can take to minimize expos OURCE WATER ASSESSMENT	a health risk for infants of less than six mont may also affect the ability of the blood to can r for short periods of time because of rainfall the standard for arsenic, it does contain low l effects of low levels of arsenic, which is a n s health problems, especially for pregnant w , but cannot control the variety of materials i wish to collect the flushed water and reuse sure is available from the Safe Drinking Wat	ths of age. Such nitrate levels in drinking water can interfere with rry oxygen in other individuals, such as pregnant women and tho or agricultural activity. evels of arsenic. The arsenic standard balances the current unc nineral known to cause cancer in humans at high concentrations omen and young children. Lead in drinking water is primarily fro used in plumbing components. When your water has been sittin it for another beneficial purpose, such as watering plants. If you er Hotline or at http://www.epa.gov/lead.	the capacity of the infant's blood to carry oxygen, resse with certain specific enzyme deficiencies. If you are erstanding of arsenic's possible health effects against and is linked to other health effects such as skin dama m materials and components associated with service I g for several hours, you can minimize the potential for are concerned about lead in your water, you may wish	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your the costs of removing arsenic from drinking water. The U.S. Environmental ige and circulatory problems. ines and home plumbing. The Sacramento County Water Agency is lead exposure by flushing your tap for 30 seconds to 2 minutes before using to have your water tested. Information on lead in drinking water, testing
Nitrate: Nitrate: Nitrate in drinking water at levels above 10 mg/L is blueness of the skin. Nitrate levels above 10 mg/L is health care provider. Nitrate levels may rise quickly Arsenic: While your drinking water meets the federal and sta Protection Agency continues to research the health Lead: If present, elevated levels of lead can cause serious responsible for providing high quality drinking water water for drinking or cooking. If you do so, you may methods, and steps you can take to minimize expos OURCE WATER ASSESSMENT To help protect the quality of existing and future groundw report in May 2019. The Water Agency's report identifie	a health risk for infants of less than six mont may also affect the ability of the blood to can for short periods of time because of rainfall ite standard for arsenic, it does contain low I effects of low levels of arsenic, which is a m is health problems, especially for pregnant w , but cannot control the variety of materials is wish to collect the flushed water and reuse sure is available from the Safe Drinking Water water supplies, the Drinking Water Source A kd the following potential contamination resu	ths of age. Such nitrate levels in drinking water can interfere with rry oxygen in other individuals, such as pregnant women and tho or agricultural activity. evels of arsenic. The arsenic standard balances the current und ineral known to cause cancer in humans at high concentrations omen and young children. Lead in drinking water is primarily fro used in plumbing components. When your water has been sittin it for another beneficial purpose, such as watering plants. If you er Hotline or at http://www.epa.gov/lead.	In the capacity of the infant's blood to carry oxygen, res se with certain specific enzyme deficiencies. If you an erstanding of arsenic's possible health effects against and is linked to other health effects such as skin dama m materials and components associated with service I g for several hours, you can minimize the potential for are concerned about lead in your water, you may wish g the vulnerability of drinking water sources to potentia	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your the costs of removing arsenic from drinking water. The U.S. Environmental ge and circulatory problems. Ines and home plumbing. The Sacramento County Water Agency is lead exposure by flushing your tap for 30 seconds to 2 minutes before using to have your water tested. Information on lead in drinking water, testing
Nitrate: Nitrate in drinking water at levels above 10 mg/L is . blueness of the skin. Nitrate levels above 10 mg/L is . health care provider. Nitrate levels may rise quickly Arsenic: While your drinking water meets the federal and sta Protection Agency continues to research the health Lead: If present, elevated levels of lead can cause serious responsible for providing high quality drinking water water for drinking or cooking. If you do so, you may methods, and steps you can take to minimize expose OURCE WATER ASSESSMENT To help protect the quality of existing and future groundw report in May 2019. The Water Agency's report identifie Arden Park Vista & Northgate: Most vulnerable to commercial types of activities su	a health risk for infants of less than six mont may also affect the ability of the blood to car for short periods of time because of rainfall ite standard for arsenic, it does contain low l effects of low levels of arsenic, which is a n s health problems, especially for pregnant w ; but cannot control the variety of materials is wish to collect the flushed water and reuse sure is available from the Safe Drinking Water water supplies, the Drinking Water Source A d the following potential contamination resu the as the dry cleaning business, gas station	ths of age. Such nitrate levels in drinking water can interfere with rry oxygen in other individuals, such as pregnant women and the or agricultural activity. evels of arsenic. The arsenic standard balances the current und ineral known to cause cancer in humans at high concentrations omen and young children. Lead in drinking water is primarily fro used in plumbing components. When your water has been sittin it for another beneficial purpose, such as watering plants. If you er Hotline or at http://www.epa.gov/lead. ssessment and Protection (DWSAP) program calls for examinin- its:	In the capacity of the infant's blood to carry oxygen, res- se with certain specific enzyme deficiencies. If you an erstanding of arsenic's possible health effects against and is linked to other health effects such as skin dama m materials and components associated with service I g for several hours, you can minimize the potential for are concerned about lead in your water, you may wist g the vulnerability of drinking water sources to potentia tank, electronic manufacturers and photo processors.	ulting in a serious illness; symptoms include shortness of breath and e caring for an infant, or you are pregnant, you should ask advice from your the costs of removing arsenic from drinking water. The U.S. Environmental ge and circulatory problems. ines and home plumbing. The Sacramento County Water Agency is lead exposure by flushing your tap for 30 seconds to 2 minutes before using n to have your water tested. Information on lead in drinking water, testing

Most vulnerabe to activities including automobile-gas stations; boat services/ repair/ refinishing; chemical/ petroleum pipelines; dry cleaners; fleet/ truck/ bus terminal; grazing; historic waste dumps/ landfills; leaking petroleum storage transfer areas; plastics/ synthetics producers; research laboratory; wells-agricultural/ irrigation types; wells-oil, gas, and geothermal types; wood preserving/ treating and sewer collection systems

Hood, East Walnut Grove and Delta Estates: Most vulnerable to irrigated crops and septic systems.

North Service Area (NSA): Most vulnerable to commercial types of activities such as grazing, known contaminant plumes, low-density septic systems, sewer collection systems and wells-agricultural irrigation types