SACRAMENTO COUNTY WATER AGENCY 2023 WATER QUALITY REPORT - CENTRAL & SOUTH SERVICE AREA (CSA & SSA) (See Note #1)

DETECTED PRIMARY STANDARDS	- Mandatory Hea	Ith-Related	d Standards						
Established by the State Water Resc	ources Control B	oard (State	e Board)						
			PHG or			SURFACE WATER (see #3)		GROUNDWATER	
	SAMPLE		(MCLG) or	MCL OR		RANGE		RANGE	WEIGHTED
CONSTITUENT	DATE (See #2)	UNITS	[MRDLG]	[MRDL]	MAJOR SOURCES IN DRINKING WATER	(LO-HI)	AVERAGE	(LO-HI)	AVERAGE
INORGANIC CONTAMINANTS									
Arsenic	2019 - 2023	PPB	0.004	10	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.	ND - 2	ND	ND - 10	ND
Barium	2015 - 2023	PPM	2	1	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits.	ND	ND	ND - 0.67	ND
Fluoride (Natural Source)	2022 - 2023	PPM	1	2	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	ND	ND	ND - 0.4	0.18
Nitrate (as N)	2022 - 2023	PPM	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.	ND	ND	ND - 3.5	ND
DISINFECTION BYPRODUCTS and DISINF	ECTION BYPROD	UCT PRECU	IRSORS						
4 TTHMs [Total Trihalomethanes]	2015 - 2016	PPB	n/a	80	Byproduct of drinking water disinfection.	ND	ND	ND - 2.7	ND
5 Control of DBP Precursors (TOC)	2023	PPM	n/a	TT	Various natural and manmade sources	0.80 - 1.3	1	NA	NA
RADIOACTIVE CONTAMINANTS				•					
Gross Alpha Activity	2015 - 2023	pCi/L	(0)	15	Erosion of natural deposits.	ND	ND	ND - 5.1	ND
6 Uranium	2015 - 2023	pCi/L	0.43	20	Erosion of natural deposits.	ND	ND	ND - 2.7	ND
Radium 226	2006 - 2023	pCi/L	0.05	n/a	Erosion of natural deposits.	ND	ND	ND - 2.42	ND
DISTRIBUTION SYSTEM						RANGE	(LO - HI)	AVE	RAGE
Chlorine Residuals	2023	PPM	[4]	[4.0]	Drinking water disinfectant added for treatment.	0.12 - 1.95		1.37	
TTHMs [Total Trihalomethanes]	2023	PPB	n/a	80	Byproduct of drinking water disinfection.	9.9 - 53		35.3	
7 HAA5 [Sum of 5 Haloacetic Acids]	2023	PPB	n/a	60	Byproduct of drinking water disinfection.	2.6 - 29		23	3.5
8 Fluoride (Treated - Distribution)	2023	PPM	1	2	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.	0.58 - 0.83 0.73		.73	
MICROBIOLOGICAL CONTAMINANTS							LEVEL	FOUND	
9 Total Coliform Bacteria	2023	% of Positive Samples	(0)	> 5% of Monthly Samples are Positive	Naturally present in the envirionment.	0.81% 0.059 NTU			
			n/a	TT = 1 NTU				NTU	ΓU
10 Turbidity	2023	NTU	n/a	TT = 95% of Samples <u><</u> 0.3 NTU	Soil Runoff	100%			

NOTES:

1. The Central and South Service Area (CSA/SSA) is a blend of groundwater from the Laguna/ Vineyard/ Country Creek Estates/ Grantline 99 water system and surface water from the Vineyard Surface Water Treatment Plant (VSWTP). 2. The State Water Resources Control Board Division of Drinking Water (SWRCB DDW) allows Sacramento County Water Agency (SCWA) to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Surface Water is from SCWA's VSWTP which provided approximately 37% of the water distributed to customers in the CSA/SSA in 2022. SCWA received none of its water from the City of Sacramento. For more information regarding the City of Sacramento's water quality data, go online (http://portal.cityofsacramento.org/Utilities/Education/water-quality) or call (916) 264-5011.

4. Total Trihalomethanes are the sum of Four Regulated THMs, i.e., Chloroform, Bromodichloromethane, Dibromochloromethane, and Bromoform.

5. Only Surface water sources must monitor for Disinfection By-Product precursors. Treatment Technique is not required if the raw or treated water TOC is < 2 PPM.

6. The SWRCB allows the measurement of gross alpha radiation as a surrogate for Uranium.

r. Haloacetic Acids are the Sum of Five Regulated HAAs, i.e., Monochloroacetic Acid, Monobromoacetic Acid, Dichloroacetic Acid, Dibromoacetic Acid, and Trichloroacetic Acid.

e. The CSA/SSA water system's facilities are all fluoridated to reduce tooth decay in children. Studies show that water fluoridation reduces tooth decay by 20 to 40 percent. The SWRCB advised SCWA to implement the Center for Disease Control & Prevention's (CDC's) recommended optimal fluoride content of 0.7 mg/L and control range of 0.6 mg/L - 1.2 mg/L. Information about fluoridation, oral health and current issues is available from http://waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.html.

On Systems that collect more than 40 samples per month, the Total Coliform Bacteria MCL is 5% of the samples collected in any one month return total coliform positive, per the Total Coliform Rule (TCR). A positive TC sample triggers collection of samples for E. coli at the source (i.e., groundwater wells) per the federal Ground Water Rule (GWR). In 2023, all samples taken per the GWR returned negative (absent) for E. coli.

10. Turbidity is a measure of the cloudiness of the water. 0.059 NTU is the highest individual measurement in 2023. 100% of the monthly samples were in compliance (below the 0.3 NTU range). SCWA monitors turbidity because it is a good indicator of the effectiveness of its filtration systems. Only surface water sources must comply with PDWS for turbidity.

SECONDARY STANDARDS - Aesthetic Standards

Established by the State Water Reso	urces Control B	oard (State	Board)						
			PHG or			SURFAC	E WATER	GROUN	DWATER
	SAMPLE		(MCLG) or	MCL OR		RANGE		RANGE	WEIGHTED
CONSTITUENT	DATE	UNITS	[MRDLG]	[MRDL]	MAJOR SOURCES IN DRINKING WATER	(LO-HI)	AVERAGE	(LO-HI)	AVERAGE
Color	2020 - 2023	Units	n/a	15	Naturally-occurring organic materials	ND - 5	1.67	ND - 5	0.6
Foaming Agents [MBAS]	2020 - 2023	PPB	n/a	500	Municipal and industrial waste discharges	ND	ND	ND - 290	60
11 Iron	2020 - 2023	PPB	n/a	300	Leaching from natural deposits; Industrial wastes	ND	ND	ND - 570	ND
Manganese	2020 - 2023	PPB	n/a	50	Leaching from natural deposits.	ND	ND	ND - 36	ND
Odor-Threshold	2020 - 2023	Units	n/a	3	Naturally-occurring organic materials.	1.5 - 2	1.77	ND - 2	ND
Turbidity	2020 - 2023	Units	n/a	5	Soil runoff.	ND	ND	ND - 0.55	0.26
Total Dissolved Solids	2020 - 2023	PPM	n/a	1000	Runoff/leaching from natural deposits.	71 - 91	83	120 - 320	224
Specific Conductance (E.C.)	2020 - 2023	umhos/cm	n/a	1600	Substances that form ions when in water; seawater influence.	56 - 110	92	170 - 530	288
Chloride	2020 - 2023	PPM	n/a	500	Runoff/leaching from natural deposits; seawater influence.	3.3 - 3.6	3.4	5 - 40	18
Sulfate	2020 - 2023	PPM	n/a	500	Runoff/leaching from natural deposits; industrial wastes.	3 - 3.8	3.3	ND - 9.3	1.8
OTHER CONSTITUENTS ANALYZED									
pН	2020 - 2023	Units	n/a	MO		7.2 - 8	7.7	7.2 - 8.1	7.8
12 Total Hardness (as CaCO3)	2020 - 2023	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	41 - 51	46	18 - 220	66
13 Total Hardness (as CaCO3)	2020 - 2023	Grains	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	2.4 - 3	2.7	1 - 13	4
Total Alkalinity (as CaCO3)	2020 - 2023	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	43 - 70	56	68 - 250	127
Bicarbonate (as HCO3)	2020 - 2023	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	43 - 77	58	68 - 280	128
Sodium	2020 - 2023	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	5.2 - 8.7	6.9	14 - 59	42
Calcium	2020 - 2023	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	9.2 - 11	10	4.2 - 41	14
Magnesium	2020 - 2023	PPM	n/a	MO	Due to chemicals naturally occuring in the soil below the earth's surface.	4.3 - 6.1	5	2 - 29	8
PER- & POLYFLUOROALKYL SU	BSTANCES (P	FAS) - See	e # 14.						

ne State Water Resources Control Board Division of Drinking Water (SWRCB DDW) established new drinking water guidelines for water agencies to follow in detecting and reporting the presence of perfluorooctanoic acid PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid (PFBS) – four members of a large family of chemicals known as per- and polyfluoroalkyl substances PFAS). Until PFOA and PFOS were phased out in the 2000s due to health concerns, these chemicals were widely used in grease and stain resistant coatings for consumer products and firefighting foams. Drinking water ontaining PFAS has become an increasing concern due to the persistence of these chemicals in the environment and their tendency to accumulate in groundwater. Long-term exposure to PFAS over certain levels is sociated with adverse health effects that include cancer and developmental harm. SWRCB DDW has identified analytical methods capable of detecting the following twenty-five (25) perfluorinated compounds in drinking

PERFLUOROBUTANE SULFONIC ACID (PFBS) PERFLUOROHEPTANOIC ACID (PFHpA) PERFLUOROHEXANE SULFONIC ACID (PFHxS) PERFLUORONONANOIC ACID (PFNA) PERFLUOROOCTYL SULFONIC ACID (PFOS) PERFLUOROOCTANOIC ACID (PFOA)

HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-DA) PERFLUOROUNDECANOIC ACID (PFUnA) PERFLUORODECANOIC ACID (PFDA) PERFLUORODODECANOIC ACID (PFDoA) PERFLUOROHEXANOIC ACID (PFHxA) 4.8-DIOXA-3H-PERFLUORONONANOIC ACID (ADONA)

Notification

11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11CI-PF3OUdS) perfluoro (2-ethoxyethane) sulfonic acid (PFEESA) 1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS) 1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS) 1H,1H, 2H, 2H-perfluorooctane sulfonic acid (6:2FTS) 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI- PF3ONS) nonafluoro-3,6-dioxaheptanoic acid (NFDHA)

perfluoro-3-methoxypropanoic acid (PFMPA) perfluoro-4-methoxybutanoic acid (PFMBA) perfluorobutanoic acid (PFBA) perfluoroheptanesulfonic acid (PFHpS) perfluoropentanesulfonic acid (PFPeS) perfluoropentanoic acid (PFPeA)

Response

GROUNDWATER (see 17.)

CONSTITUENT	DATE	UNITS	Level (#15)	Level (#16)	MAJOR SOURCES IN DRINKING WATER	RANGE (LO - HI)	AVERAGE	
					Chemicals used in grease and stain resistant coatings for consumer products and firefighting			
Perfluorooctanoic Acid [PFOA]	2020 - 2023	PPT	5.1	10	foams.	ND - 6.7	ND	
					Chemicals used in grease and stain resistant coatings for consumer products and firefighting			
Perfluorooctyl Sulfonate [PFOS]	2020 - 2023	PPT	6.5	40	foams.	ND - 6.6	ND	
					Chemicals used in grease and stain resistant coatings for consumer products and firefighting			
Perfluorohexane sulfonic acid (PFHxS)	2020 - 2023	PPT	3	20	foams.	ND - 4.1	ND	

NOTES:

11. On 05/09/2023, an iron monitoring sample taken at the Lakeside Water Treatment Plant (WTP) storage tank returned a result of 570 PPB, exceeding the MCL of 300 PPB. SCWA believes this was caused by a sampling process issue as all samples for iron at the finished water taken during the same month returned Non-Detect. A follow-up sample taken a week later from the same tank returned Non-Detect. The weighted average for iron in the SSA/ CSA water system is Non-Detect. The iron MCL was set to protect against unpleasant aesthetic effects (e.g., color, taste and odor) which may stain household fixtures (e.g., tubs and sinks).

12. Hardness units are PPM. General guidelines for classification of water hardness are: 0 - 60 PPM as soft; 61 - 120 PPM as moderately hard; 121 - 180 PPM as hard; and greater than 180 PPM as very hard.

13. Most commercial companies use "grain" units. Conversion: 17.1 PPM = 1 grain.

SAMPLE

14. Starting in the 2nd Quarter of 2019, SCWA (per SWRCB DDW direction) began PFAS monitoring at numerous wells in the CSA/SSA water system. SCWA concentrated testing where detectable amounts of PFAS were found in groundwater wells. For more information on PFAS, PFOA and PFOS, please visit the SWRCB DDW's resource page: https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/pfas.html

15. The guidelines adopted by the SWRCB DDW set Notification Levels (NL) of 5.1 parts per trillion (PPT) for PFOA, 6.5 PPT for PFOS, 500 PPT for PFBS and 3 PPT for PFHxS. If the NL is exceeded, the water agency (SCWA) is required to report the results to the Sacramento County Board of Supervisors, the SWRCB DDW, and the customer.

16. The SWRCB DDW established a Response Level (RL) of 10 PPT for PFOA, 40 PPT for PFOS, 5000 PPT for PFBS and 20 PPT for PFHxS. If the RL is exceeded in drinking water provided to consumers, the SWRCB DDW recommends that the water agency consider taking the water source out of service, provide treatment if that option is available, or provide public notice of the exceedance level

17. The CSA/ SSA water system's Duck Slough Well (W43) and Feather Creek Well (W47) had levels of PFOA, PFOS & PFHxS which exceeded the SWRCB's notification levels (NL). W43 & W47 were both taken offline in 2022. PFAS analysis results for fifteen (15) other well in the CSA/ SSA water system through December 31, 2023 were Non-Detect.

SACRAMENTO COUNTY WATER AGENCY 2023 WATER QUALITY REPORT - CENTRAL & SOUTH SERVICE AREA (CSA & SSA) (See Note #1)

ONTAMINANT	SAMPLE DATE	UNITS	PHG or (MCLG)	ACTION MAJOR SOURCE				NUMBER OF SAMPLES	90TH % LEVEL DETECTED	NUME EXCEED	
Lead		PPB		Internal corrosion of household water plur		ng systems; discharge	systems; discharges from industrial				
	2022		(0.2)	Internal corrosion of household plumbing syst		ms; erosion of natural	deposits; leaching		ND		
Copper	2022 SAMPLE	PPM	(0.3) PHG or	1.3 ACTION				50 NUMBER OF	0.15 RANGE	0 NUME	BER
EAD Sampling in schools	DATE	UNITS	(MCLG)	LEVEL	DRINKING WATER		e frene inductrial	SCHOOLS	DETECTED	EXCEED	ING AL
Lead (Elk Grove Unified School District) 2017	PPB	(0.2)	15	ernal corrosion of household water plumbin manufactures; erosion of		s nom industrial	29	ND - 9.8	0	
of the samples taken in the CSA/ S	SSA exceeded the ber 1, 2019, the s	e Action Le SWRCB rec	vel for Coppe quired SCWA	r; however, one sample to provide one-time as	tap water samples taken throughout Lead exceeded the AL with a result of nce with lead sampling to all public, pr	f 16 PPB (µg/L). P	lease refer to the	e educational info	ormation on Lead	t in drinking wate	er.
ALRegulatory Action Level	NA	Not Analyz	zed	NRNot Required		PPBParts p	er Billion (ug/l)		TOCTotal Or	ganic Carbon	
MFLMillion Fibers Per Liter		Not Applic		NTUNephelomet		PPM…Parts p	er Million (mg/	l)	TTTreatment	t Technique	
MOMonitored Only		Non-Detec		PDWSPrimary D	~	•	er Trillion (ng/l)	WTPWater T	PWater Treatment Plant		
MPNMost Probable Number	NLI	Notificatior	n Level	pCi/LPico Curies	liter	RLRespons	e Level				
· · · ·	U 1	second in 1 part pe 1 part pe 1 part pe		time, the following tir PM) PB) PT)	the amount of a chemical in wate ames would be an appropriate or econd in 11.5 days econd in nearly 32 years econd in nearly 32,000 years econd in nearly 32,000,000 ye		water from Plant and a thirty-four (3 treatmen information	its Vineyard S oproximately 4 4) groundwate nt plants (WTP n regarding th	proximately 66 Surface Water 40% groundwa er wells and ni 2s). For more 6 is report or SC rley @ (916) 87	Treatment ter from its ne (9) water detailed SWA water	
DERAL UNREGULATED CONTAM	INANT MONITO	RING RULI	Minimum	Established by USEF	ee Note 19)		ON SYSTEM	SUBEAC	EWATER	GROUND	
IEMICAL	DATE	UNITS	Reporting Level	MAJOR S	CES IN DRINKING WATER	RANGE	AVERAGE	RANGE	WTD. AVG.	RANGE	WTD. AV
Manganese	2018 - 2019	PPB	0.4	Le	g from natural deposits	NA	NA	ND - 1.2	0.3	ND - 25	6.25
Germanium Bromide	2018 - 2019	PPB PPB	0.3 n/a			NA	NA NA	ND ND - 25	ND 5	ND - 1.9 NA	0.84 NA
Total Organic Carbon	2018 - 2019 2018 - 2019	PPM	n/a	Vario	ural and manmade sources	NA	NA	1.4 - 2.8	1.96	NA	NA
HAA5	2018 - 2019	PPB	n/a		f drinking water disinfection	0.24 - 22	11.6	NA	NA	NA	NA
HAA6Br	2018 - 2019	PPB	n/a		f drinking water disinfection	ND - 4.95	2.73	NA	NA	NA	NA
HAA9 Cyanotoxins (see Note 21)	2018 - 2019	PPB	n/a	Additional Chemic	f drinking water disinfection	0.24 - 25.45	14.06	NA	NA	NA	NA
Total Microcystin	Microcystin-R	R		Germanium	Tebuconazole		Oxyfluorfen		(o-toluidine	
Microcystin-LA	Microcystin-YI	R		Manganese	Dimethipin		1-butanol		(quinoline	
Microcystin-LF	Nodularin			Alpha-hexachlorocy	exane Total Permethrin	(cis- & trans-)	2-propen-1-ol			HAA5	
Microcystin-LR	Anatoxin-a			Profenofos	Ethoprop		2-methoxyetha			HAA6Br (see No	te 22)
Microcystin-LY TES:	Cylindrosperm	nopsin		Chlorpyrifos Tribufos				butylated hydroxyanisole HAA9			
 According to UCMR4, the two indic score by the fourth Fe monitor for twenty (20) additional system. For more information abo 	cators (TOC & Br deral UCMR to n chemical conta ut the Federal U(9) each comprise	romide) nee nonitor for to minants at CMR4, go c e of a differe	ed to be monit en (10) cyan the entry poir online at https ent combinatio	ored at the source wat otoxins at the entry po to to the distribution system s://www.epa.gov/dwu on of the Haloacetic Ac	tion Levels help determine where cer ake (raw water) for surface water (i.e., the distribution system during a 4-cor and indicators (TOC & Bromide) durin ourth-unregulated-contaminant-mo hlorodibromoacetic acid, Dichloroace	, the Sacramento R nsecutive month pe ng a 12-month pero onitoring-rule .	tiver). riod, according t d. The Haloace	o the list of cons tic Acids (HAAs)	tituents above. S need to be monit	tored in the distr	ibution
Secondary MCLs are set to protect th Maximum Contaminant Level Goal (N Maximum Residual Disinfectant Level Maximum Residual Disinfectant Level of disinfectants to control microbial cont Primary Drinking Water Standards (P Public Health Goal (PHG). The level o Range (Lo - Hi): The range between th	nit at or above which The highest level of the odor, taste, and a ICLG): The level of I(MRDL): The high of Goal (MRDLG): traininants. (DWS): MCLs, MRI f a contaminant in of the lowest and higher	th a contamin of a contamin appearance of a contamin hest level of The level of DLs and treat drinking wate est values of a	ant that is allow of drinking wate ant in drinking v a disinfectant a a drinking water ment technique r below which th a specific substa	ved in drinking water. Prim r. vater below which there is llowed in drinking water. disinfectant below which es (TTs) for contaminants in here is no known or expec- ance measured throughou		e set by the U.S. Envi sinfectant is necessar RDLGs do not reflect th reporting requiremen a Environmental Prote	ronmental Protection y for control of mic the benefits of the u	on Agency. robial contaminants	5.		
Treatment Technique (TT): A required Weighted Average (WTD AVG): An a for the whole system. Instead of ea ate Mandated Information for Arse	process intended t verage of water qua ch of the sample re	to reduce the ality samples	level of a conta in which each s	aminant in drinking water. sample is assigned a weig	uirements that a water system must follow ach sample's contribution (or weight) is bas esults contribute more than others.		vater the correspor	iding water source	produces		
Arsenic: While your drinking water meets th arsenic from drinking water. The U				t does contain low leve		ces the current und	erstanding of ars	enic's possible h	ealth effects aga		removing

Cryptosporidium:

Cryptosporidium is a microbial pathogen found in surface water (e.g., rivers, lakes and streams) throughout the U.S. SCWA's monitoring indicates the presence of these organisms in our source water, which is the Sacramento River.

Between May 2015 and April 2017 SCWA took monthly samples for Giardia and Cryptosporidium, as well as turbidity and E. coli. Of the 24 samples taken, only one detected the presence of these organisms. The results ranged from nondetect (ND) to 0.182 Oocysts per liter. The maximum average is below the threshold of 0.075 oocysts per liter. SCWA's surface water is treated with a thorough disinfection and filtration process to remove Cryptosporidium before distribution to the customer; however, the most commonly-used filtration methods cannot guarantee 100 percent removal. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immune-compromised people, infants and small children and the elderly are at greater risk of developing life-threatening illness. We encourage immune-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water

SOURCE WATER ASSESSMENT

To help protect the quality of existing and future groundwater supplies, the Drinking Water Source Assessment and Protection (DWSAP) program calls for examining the vulnerability of drinking water sources to potential contamination. The Water Agency completed its latest comprehensive report in May 2019. The Water Agency's report identified the following potential contamination results:

Arden Park Vista & Northgate:

Most vulnerable to commercial types of activities such as the dry cleaning business, gas stations, a sewer collection system and a leaking underground storage tank, electronic manufacturers and photo processors.

Central & South Service Area (CSA & SSA)

Hotline or at http://www.epa.gov/lead.

Most vulnerabe to activities including automobile-gas stations; boat services/ repair/ refinishing; chemical/ petroleum pipelines; dry cleaners; fleet/ truck/ bus terminal; grazing; historic waste dumps/ landfills; leaking underground storage tanks; other animal operations; pesticides/ fertilizer/ petroleum storage transfer areas; plastics/ synthetics producers; research laboratory; wells-agricultural/ irrigation types; wells-oil, gas, and geothermal types; wood preserving/ treating and sewer collection systems

Hood, East Walnut Grove and Delta Estates:

Most vulnerable to irrigated crops and septic systems.

North Service Area (NSA):

Most vulnerable to commercial types of activities such as grazing, known contaminant plumes, low-density septic systems, sewer collection systems and wells-agricultural irrigation types